
+

Executors and
Asynchronous Operations
http://chriskohlhoff.github.io/executors/

+
Using the executors library:
a two minute introduction

2

+

Run a function
asynchronously.

#include <experimental/executor>

using std::experimental::post;

int main()
{
 post([]{
 // ...
 });
}

3

+

Run a function
asynchronously on
your own thread pool.

#include <experimental/executor>
#include <experimental/thread_pool>

using std::experimental::post;
using std::experimental::thread_pool;

int main()
{
 thread_pool pool;

 post(pool, []{
 // ...
 });

 pool.join();
}

4

+

Run a function
asynchronously.
Wait for the result.

#include <experimental/executor>
#include <experimental/future>
#include <iostream>

using std::experimental::post;
using std::experimental::package;

int main()
{
 std::future<int> f =
 post(package([]{
 // ...
 return 42;
 }));

 std::cout << f.get() << std::endl;
}

5

+

Run a function
asynchronously on
your own thread pool.
Wait for the result.

#include <experimental/executor>
#include <experimental/future>
#include <experimental/thread_pool>
#include <iostream>

using std::experimental::post;
using std::experimental::package;
using std::experimental::thread_pool;

int main()
{
 thread_pool pool;

 std::future<int> f =
 post(pool, package([]{
 // ...
 return 42;
 }));

 std::cout << f.get() << std::endl;
}

6

+

Run a function in the
future.
Wait for the result.

#include <experimental/executor>
#include <experimental/future>
#include <experimental/timer>
#include <iostream>

using std::experimental::post_after;
using std::experimental::package;

int main()
{
 std::future<int> f =
 post_after(
 std::chrono::seconds(1),
 package([]{
 // ...
 return 42;
 }));

 std::cout << f.get() << std::endl;
}

7

+
The vocabulary

8

+
Executor

Executors are to function execution as
allocators are to memory allocation

n  An executor is a set of rules governing where, when and how to run
a function object.

n  Like allocators, executors are lightweight and cheap to copy.

n  Examples:

n  The system executor

n  A strand

9

+
Execution context

n  An execution context is a place where function objects are
executed.

n  Examples:
n  A fixed-size thread pool

n  A loop scheduler

n  An asio::io_service

n  The set of all threads in the process

10

+
Example: a thread pool

n  A thread pool is an execution context.

n  A thread pool has an executor.

n  A thread pool’s executor embodies this rule:

Run function objects in the pool and nowhere else.

11

+
Example: a strand

n  A strand is an executor.

n  A strand is an adapter for an underlying executor.

n  A strand embodies this rule:

Run function objects according to the underlying executor’s
rules, but also run them in FIFO order and not concurrently.

12

+

thread_pool
execution

context

Execution contexts and executors
13

+
Execution contexts and executors

n  Usually long lived.

n  Non-copyable.

n  May contain additional state.

n  Timer queues.

n  Socket reactors.

n  Hidden threads to emulate
asynchronous functionality.

n  May be long or short lived.

n  Lightweight and copyable.

n  May be customized on a fine-
grained basis.

n  Example: an executor to
capture exceptions
generated by an
asynchronous operation into
an exception_ptr.

14

Execution contexts Executors

+
Dispatch, post and defer

n  The three fundamental operations for submitting function
objects for execution.

n  They differ in the level of eagerness to execute a function.

n  May be used to submit function objects to an executor or an
execution context.

15

+
Dispatch

n  Run the function object immediately if the rules allow it.

n  Otherwise, submit for later execution.

n  Example: a thread pool
n  Rule: run function objects in the pool and nowhere else.

n  If we are on a thread in the pool, run the function object
immediately.

n  If we are not on a thread in the pool, queue the function object for
later and wake up a thread to process it.

16

+
Post

n  Submit the function for later execution.

n  Never run the function object immediately.

n  Example: a thread pool
n  Whether or not we are on a thread in the pool, queue the function

object for later and wake up a thread to process it.

17

+
Defer

n  Submit the function for later execution.

n  Never run the function immediately.

n  Implies a continuation relationship between caller and
function object.

n  Example: a thread pool
n  If we are not on a thread in the pool, queue the function object for

later and wake up a thread to process it.

n  If we are on a thread in the pool, queue the function object for
later, but don’t wake up a thread to process it until control returns
to the pool.

18

+
Use case #1:
replacing std::async

19

+
A replacement for std::async

n  With std::async we can submit a function object that runs in a
different thread.

 std::future<int> f = std::async([]{
 // ...
 return 42;
 }));

 int i = f.get();

n  The equivalent is to post a packaged task.

 std::future<int> f = post(
 package([]{
 // ...
 return 42;
 }));

20

+
Collecting the function result

n  We can package and post a function with any return type.

 std::future<std::string> f = std::async([]{
 // ...
 return "hello"s;
 }));

 std::string s = f.get();

n  This includes functions that just return void.

 std::future<void> f = post(
 package([]{
 // ...
 }));

 f.get();

21

+
Using packaged_task

n  The package function creates a packaged_task.

n  We can also post a packaged_task directly. If so, we must
explicitly specify the call signature.

 std::future<int> f = post(
 std::packaged_task<int()>(
 []{
 // ...
 return 42;
 }));

 int i = f.get();

22

+
Using function objects

n  Any 0-argument function object can be submitted using post.

n  Example: lambdas

 post([]{
 // ...
 });

n  Example: functions

 void do_something();

 post(&do_something);

23

+
Using function objects

n  Example: function object binders

 post(std::bind(&my_class::my_function, this));

n  Example: hand-rolled function objects

 struct my_function {
 void operator()() {
 // ...
 }
 };

 post(my_function());

24

+
The system executor

n  By default, the post function submits function objects to the
system executor.

n  The system executor represents the set of all threads in the
process.

n  The system executor embodies this rule:

Function objects are allowed to run on any thread in the system.

n  Like std::async, the system executor can automatically
allocate threads to run function objects that are submitted to
it.

25

+
Using a thread pool

n  Unlike std::async, with post we can specify that the function
object be run on a particular executor or execution context.

 thread_pool pool;

 std::future<int> f = post(pool,
 package([]{
 // ...
 return 42;
 }));

n  If the thread pool is stopped, any queued function objects
will be abandoned.

 pool.stop();
 pool.join();

26

+
Use case #2:
active objects

27

+
Active objects

n  In the Active Object design pattern, all operations associated
with an object are run in its own private thread.

n  To implement an active object, use a class member that is a
thread pool containing a single thread.

 class bank_account {
 int balance_ = 0;
 thread_pool pool_{1};
 // ...
 };

28

+
Active object operations

n  An active object operation involves three steps.
n  Package the body of the operation .

n  Post the package to the thread pool.

n  Use a future to wait for the operation to complete.

 class bank_account {
 // ...
 void deposit(int amount) {
 post(pool_,
 package([]{
 balance_ += amount;
 })).get();
 }
 };

29

+
Use case #3: parallelism in
application data flow

30

+
Design of a simple trading system

31

1. Receive new order
message from client

3. Match new order
against existing buy
and sell orders 5. Disseminate orders

and trades

2. Dispatch
to order
book

4. Publish
result of
match

+
1. Connection handler

n  A connection handler is responsible for receiving messages
from a client.

n  Uses a thread pool to implement the Leader/Followers
design pattern.
n  A leader thread waits for the next message.

n  A new message arrives. The leader thread promotes a follower to
become the new leader.

n  The former leader processes the message.

n  The former leader returns to the pool as a follower thread.

32

+
1. Connection handler

n  Leader/Followers implementation:

 void connection_handler::receive_and_dispatch()
 {
 // Wait until a new message is received.
 char buffer[1024];
 std::size_t length = socket_.receive(buffer, sizeof(buffer));

 // Wake another thread to wait for new messages.
 std::experimental::post(thread_pool_,
 [this]{ receive_and_dispatch(); });

 // Process the new message and pass it to the order management bus.
 std::istringstream is(std::string(buffer, length));
 order_management::new_order event;
 if (is >> event)
 order_management_bus_.dispatch_event(event);
 }

33

+
2. Order management bus

n  Passes new messages to the appropriate order book.

n  Order books are subscribed to the bus only during program
start. No synchronization is required to dispatch an event.

 void order_management_bus::dispatch_event(
 order_management::new_order o)
 {
 auto iter = books_.find(o.symbol);
 if (iter != books_.end())
 iter->second->handle_event(o);
 }

34

+
3. Order book

n  An order book maintains the open buy and sell orders for a
given stock, such as GOOG or MSFT.

n  An incoming order triggers a search for matching orders.

n  For each matching order found, the order book creates one
or more trades.

n  Any left over quantity on the incoming order is added to the
book.

35

+
3. Order book

n  New orders must be processed atomically and in FIFO order.

n  To meet these requirements, we combine three components:
n  The system executor

n  A strand

n  The dispatch function

 class price_time_order_book : public order_book
 {
 std::experimental::strand<std::experimental::system_executor> strand_;
 // ...
 };

 void price_time_order_book::handle_event(order_management::new_order o)
 {
 std::experimental::dispatch(strand_, [=]{ process_new_order(o); });
 }

36

+
3. Order book

n  A system_executor embodies this rule:

Function objects are allowed to run on any thread in the system.

n  A strand embodies this rule:

Run function objects according to the underlying executor’s
rules, but also run them in FIFO order and not concurrently.

n  The dispatch function says:
n  Run the function object immediately if the rules allow it.

n  Otherwise, submit for later execution.

37

+
3. Order book

n  Thus, the combination of system_executor, strand and
dispatch...

 std::experimental::dispatch(strand_, [=]{ process_new_order(o); });

n  means:

If the strand is not busy, run process_new_order immediately.

n  If there is no contention on the strand, latency is minimized.

n  If there is contention, the strand in any case ensures that
process_new_order is never run concurrently.

n  Distinct order books can still process orders in parallel.

38

+
4. Market data bus

n  Passes the result of a match to the market data feeds for
dissemination.

n  Feeds are subscribed to the bus only during program start.
No synchronization is required to dispatch an event.

 void market_data_bus::dispatch_event(market_data::new_order o)
 {
 for (auto& f: feeds_)
 f->handle_event(o);
 }

 void market_data_bus::dispatch_event(market_data::trade t)
 {
 for (auto& f: feeds_)
 f->handle_event(t);
 }

39

+
5. Market data feed

n  Sends messages to subscribers, e.g. using UDP multicast.

n  Messages must be processed atomically and in FIFO order.

n  Uses system_executor, strand and dispatch.

 void market_by_order::handle_event(market_data::new_order o)
 {
 std::experimental::dispatch(strand_,
 [=]() mutable
 {
 o.sequence_number = next_sequence_number_++;
 std::ostringstream os;
 os << o;
 std::string msg = os.str();
 socket_.send(msg.data(), msg.length());
 });
 }

40

+
5. Market data feed

n  Sends a heartbeat once a second.

 void market_by_order::send_heartbeat()
 {
 market_data::heartbeat h;
 h.sequence_number = next_sequence_number_;
 h.time = std::time(nullptr);

 std::ostringstream os;
 os << h;
 std::string msg = os.str();

 socket_.send(msg.data(), msg.length());

 std::experimental::defer_after(std::chrono::seconds(1),
 strand_, [this]{ send_heartbeat(); });
 }

n  Uses a defer operation since the submitted function object
represents a continuation of the caller.

41

+
Trading system design summary

42

Thread pool with
Leader/Followers
design pattern

Dispatches through a
strand on the system
executor Dispatches through a

strand on the system
executor

+
Example: flow of three
simultaneously arriving orders

43

Thread from
Connection
Handler #1
thread pool

Thread from
Connection
Handler #2
thread pool

Thread from
Connection
Handler #3
thread pool

contended message flow,
queued by strand

dispatched
immediately

dispatched
immediately

dispatched
immediately

contended message flow,
queued by strand

+
Use case #4:
asynchronous operations

44

+
Chains of asynchronous operations

n  Asynchronous operations are often chained.

 void connection::do_read()
 {
 socket_.async_read_some(in_buffer_,
 [this](error_code ec, size_t n)
 {
 // ... process input data ...
 if (!ec) do_read();
 });
 }

45

+
Chains of asynchronous operations

n  And in many cases an object will have more than one chain.

 void connection::do_write()
 {
 // ... generate output data ...
 async_write(socket_, out_buffer_,
 [this](error_code ec, size_t n)
 {
 if (!ec) do_write();
 });
 }

46

+
Coordinating multiple chains

n  With a single-threaded event loop, only one handler can
execute at a time.

n  No synchronization is required to protect shared data.

47

+
Coordinating multiple chains

n  However, if we choose to execute the completion handlers on
a thread pool ...

n  ... we may introduce data races.

48

+

n  A strand ensures that completion handlers never execute
concurrently.

n  Explicit synchronization is still not required to protect shared
data.

strand_

Coordinating chains using a strand
49

queued by
strand

+
Coordinating chains using a strand

n  To implement this, we use a single strand for all
asynchronous operations associated with an object.

 void connection::do_read()
 {
 socket_.async_read_some(in_buffer_,
 wrap(strand_, [this](error_code ec, size_t n)
 {
 // ... process input data ...
 if (!ec) do_read();
 }));
 }

n  The wrap function is used to associate an executor with an
object.
n  In this example, we associate the strand with the lambda.

50

+
Coordinating chains using other
executor types

n  The wrap function works with any executor or execution
context.

 void connection::do_read()
 {
 socket_.async_read_some(in_buffer_,
 wrap(pool_, [this](error_code ec, size_t n)
 {
 // ... process input data ...
 if (!ec) do_read();
 }));
 }

n  Here we are associating a thread pool with the lambda.

51

+
The associated executor

n  Rather than using the wrap function, the associated executor
can be manually specified.
n  Provide a nested executor_type typedef and a get_executor

member function.

n  Example: hand-rolled function object

 struct my_function {
 typedef system_executor executor_type;

 executor_type get_executor() const noexcept {
 return system_executor();
 }

 void operator()() { ... }
 };

52

+
Executor-aware
asynchronous operations

n  For this to work correctly, an asynchronous operation must
participate in an executor-aware model.

n  An executor-aware asynchronous operation must:
n  Ask the completion handler for its associated executor.

n  While pending, maintain an executor_work object for the
associated executor.

n  Tells the executor to expect a function object in the future.

n  Example: tells a thread pool to keep running.

n  Dispatch, post or defer any intermediate handlers, and the final
completion handler, through the associated executor.

n  Ensures handlers are executed according to the rules.

n  Example: execute all handlers within the same strand.

53

+
Example: an executor-aware
asynchronous file read

n  Asynchronously read a line from a file and pass the string to
the handler.

 template <class Handler>
 void async_getline(std::istream& is, Handler handler)
 {
 // Create executor_work for the handler’s associated executor.
 auto work = make_work(handler);

 post([&is, work, handler=std::move(handler)]() mutable {
 std::string line;
 std::getline(is, line);

 // Pass the result to the handler, via the associated executor.
 dispatch(work.get_executor(),
 [line=std::move(line), handler=std::move(handler)]() mutable {
 handler(std::move(line));
 });
 });
 }

54

+
Composing executor-aware
asynchronous operations

n  When composing asynchronous operations, intermediate
operations can simply reuse the associated executor of the
final handler.

 template <class Handler>
 void async_getlines(std::istream& is, std::string init, Handler handler)
 {
 // Get the final handler's associated executor.
 auto ex = get_associated_executor(handler);

 // Use the associated executor for each operation in the composition.
 async_getline(is,
 wrap(ex, [&is, lines=std::move(init), handler=std::move(handler)]
 (std::string line) mutable
 {
 if (line.empty())
 handler(lines);
 else
 async_getlines(is, lines + line + "\n", std::move(handler));
 }));
 }

55

+
The executors library and
asynchronous operations

n  Executors and execution contexts are key parts of an
asynchronous model.

n  The functions provided by the executors library ...
n  dispatch, post, defer

n  dispatch_at, post_at, defer_at

n  dispatch_after, post_after, defer_after

n  ... are really just executor-aware asynchronous operations.

56

+
Summary of executors
library key features

57

+
Type traits

n  Class template handler_type
n  Transforms a completion token into a completion handler.

n  Class template async_result
n  Determines the result of an asynchronous operation’s initiating

function.

n  Class template async_completion
n  Helper to simplify implementation of an asynchronous operation.

58

+
Memory

n  Class template associated_allocator
n  Used to determine a handler’s associated allocator.

n  Function get_associated_allocator.
n  Obtain a handler’s associated allocator.

59

+
Executors

n  Class template execution_context
n  Base class for execution context types.

n  Class template associated_executor
n  Used to determine a handler’s associated executor.

n  Function get_associated_executor
n  Obtain a handler’s associated executor.

n  Class template executor_wrapper
n  Associates an executor with an object.

n  Function wrap
n  Associate an executor with an object.

60

+
Executors

n  Class template executor_work
n  Tracks outstanding work against an executor.

n  Function make_work
n  Create work to track an outstanding operation.

n  Class system_executor
n  Executor representing all threads in system.

n  Class executor
n  Polymorphic wrapper for executors.

61

+
Executors

n  Functions dispatch, post and defer
n  Execute a function object.

n  Class template strand
n  Executor adapter than runs function objects non-concurrently and

in FIFO order.

62

+
Timers

n  Functions dispatch_at, post_at and defer_at
n  Execute a function at an absolute time.

n  Functions dispatch_after, post_after and defer_after
n  Execute a function after a relative time.

63

+
Futures

n  Class template specialization async_result for packaged_task
n  Supports use of packaged_task with dispatch, post, defer, etc.

n  Class template packaged_handler
n  Implements lazy creation of a packaged_task.

n  Class template packaged_token
n  Implements lazy creation of a packaged_task.

n  Function package
n  Return a packaged_token for use with dispatch, post, defer, etc.

64

+
Execution contexts

n  Class thread_pool
n  A fixed size thread pool.

n  Class loop_scheduler
n  A thread pool where threads are explicitly donated by the caller.

65

