Executors and
Asynchronous Operations

http://chriskohlhoff.github.io/executors/




Using the executors library:
a two minute introduction




Run a function post([14

asynchronously. . /] ...




Run a function
asynchronously on

thread_pool pool;

post(pool, []{
/] ...
});

your own thread pool.

pool.join();




Run a function std: :future<int> f =

asynchronously. post(package ([1{
/] ...

return 42;

P);

Wait for the result.

std::cout << f.get() << std::endl;




Run a function
asynchronously on

your own thread pool.
Wait for the result.

thread_pool pool;

std: :future<int> f =
post(pool, package([]{
// ...

return 42;

P);

std::cout << f.get() << std:

-endl;



Run a function in the std: :future<int> f =

future. post_after(
std::chrono::seconds(1),
package ([1{

// ...

return 42;

P)J;

Wait for the result.

std::cout << f.get() << std::endl;




The vocabulary




+
Executor

Executors are to function execution as
allocators are to memory allocation

m An executor is a set of rules governing where, when and how to run
a function object.

m Like allocators, executors are lightweight and cheap to copy.

m Examples:
m The system executor

m A strand



+ .
Execution context

m An execution context is a place where function objects are
executed.

m Examples:
m A fixed-size thread pool
m A loop scheduler
m An asio::lo_service

m The set of all threads in the process



Example: a thread pool

m A thread pool is an execution context.
m A thread pool has an executor.
m A thread pool’s executor embodies this rule:

Run function objects in the pool and nowhere else.



=
Example: a strand

m A strand is an executor.
m A strand is an adapter for an underlying executor.
m A strand embodies this rule:

Run function objects according to the underlying executor’s
rules, but also run them in FIFO order and not concurrently.



+ .
Execution contexts and executors

thread_pool
execution
context



Execution contexts and executors

Execution contexts

m Usually long lived. m May be long or short lived.

m Non-copyable. m Lightweight and copyable.

m May contain additional state. m May be customized on a fine-
= Timer queues. grained basis.
a Socket reactors. m Example: an executor to

capture exceptions
generated by an
asynchronous operation into
an exception_ptr.

m Hidden threads to emulate
asynchronous functionality.



+
Dispatch, post and defer

m The three fundamental operations for submitting function
objects for execution.

m They differ in the level of eagerness to execute a function.

m May be used to submit function objects to an executor or an
execution context.



+ .
Dispatch

m Run the function object immediately if the rules allow it.
m Otherwise, submit for later execution.

m Example: a thread pool
m Rule: run function objects in the pool and nowhere else.

m If we are on a thread in the pool, run the function object
immediately.

m If we are not on a thread in the pool, queue the function object for
later and wake up a thread to process it.



+
Post

m Submit the function for later execution.
m Never run the function object immediately.

m Example: a thread pool

m Whether or not we are on a thread in the pool, queue the function
object for later and wake up a thread to process it.



+
Defer

m Submit the function for later execution.
m Never run the function immediately.

m Implies a continuation relationship between caller and
function object.

m Example: a thread pool

m If we are not on a thread in the pool, queue the function object for
later and wake up a thread to process it.

m If we are on a thread in the pool, queue the function object for
later, but don’t wake up a thread to process it until control returns
to the pool.



Use case #1:
replacing std::async




.P.
A replacement for std::async

m With std::async we can submit a function object that runs in a
different thread.

std::future<int> f = std::async([]{
// ...

return 42;

P)J;

int 1 = f.get();

m The equivalent is to post a packaged task.

std::future<int> f = post(
package ([1{
// ...

return 42;

)



Collecting the function result

m We can package and post a function with any return type.

std: :future<std::string> f = std::async([]{
// ...

return "hello"s;

)

std::string s = f.get();

m This includes functions that just return void.
std::future<void> f = post(
package([]{
// ...
3));
f.get();



.P.
Using packaged._task

m The package function creates a packaged._ task.

m We can also post a packaged._task directly. If so, we must
explicitly specify the call signature.

std::future<int> f = post(
std: :packaged_task<int()>(

[14{
/] ..

return 42;

P);

int 1 = f.get(Q);



.P.
Using function objects

m Any O-argument function object can be submitted using post.
m Example: lambdas

post([]{
/] ...
1)

m Example: functions

void do_something();

post(&do_something);



Using function objects

m Example: function object binders
post(std::bind(&my_class::my_function, this));

m Example: hand-rolled function objects

struct my_function {
void operator() () {
// ...
}
s

post(my_function());



The system executor

m By default, the post function submits function objects to the
system executor.

m The system executor represents the set of all threads in the
process.

m The system executor embodies this rule:
Function objects are allowed to run on any thread in the system.

m Like std::async, the system executor can automatically
allocate threads to run function objects that are submitted to
it.



=
Using a thread pool

m Unlike std::async, with post we can specify that the function
object be run on a particular executor or execution context.

thread_pool pool;

std::future<int> f = post(pool,

package([]{
/]

return 42;

1));

m If the thread pool is stopped, any queued function objects
will be abandoned.

pool.stop();
pool.join();



Use case #2:
active objects




.P.
Active objects

m In the Active Object design pattern, all operations associated
with an object are run in its own private thread.

m To implement an active object, use a class member that is a
thread pool containing a single thread.

class bank_account {

int balance_ = 0;
thread_pool pool_{1};

/] ...
};



Active object operations

m An active object operation involves three steps.
m Package the body of the operation .
m Post the package to the thread pool.

m Use a future to wait for the operation to complete.

class bank_account {

// ...
void deposit(int amount) {
post(pool_,
package([]{
balance_ += amount;
, })).getQ);




Use case #3: parallelism in
application data flow




==

Design of a simple trading system

1. Receive new order
message from client

2. Dispatch
to order
book
4. Publish
. result of
I match
OI‘der Il 'A

Books

3. Match new order
against existing buy

and sell orders 5. Disseminate orders

and trades



1. Connection handler

m A connection handler is responsible for receiving messages
from a client.

m Uses a thread pool to implement the Leader/Followers
design pattern.

m A leader thread waits for the next message.

m A new message arrives. The leader thread promotes a follower to
become the new leader.

m The former leader processes the message.

m The former leader returns to the pool as a follower thread.



.F.
1. Connection handler

m Leader/Followers implementation:

void connection_handler: :receive_and_dispatch()
{
// wWait until a new message i1s received.
char buffer[1024];
std::size_t length = socket_.receive(buffer, sizeof(buffer));

// Wake another thread to wait for new messages.
std: :experimental::post(thread_pool_,
[this]{ receive_and_dispatch(); });

// Process the new message and pass 1t to the order management bus.
std::istringstream is(std::string(buffer, length));
order_management::new_order event;
if (is >> event)

order_management_bus_.dispatch_event(event);



2. Order management bus

m Passes new messages to the appropriate order book.

m Order books are subscribed to the bus only during program
start. No synchronization is required to dispatch an event.

void order_management_bus: :dispatch_event(
order_management: :new_order o)
{

auto iter = books_.find(o.symbol);
if (iter !'= books_.end())
iter->second->handle_event(o);



3. Order book

m An order book maintains the open buy and sell orders for a
given stock, such as GOOG or MSFT.

m An incoming order triggers a search for matching orders.

m For each matching order found, the order book creates one
or more trades.

m Any left over quantity on the incoming order is added to the
book.



3. Order book

m New orders must be processed atomically and in FIFO order.

m To meet these requirements, we combine three components:
m The system executor

m A strand

m The dispatch function

class price_time_order_book : public order_book

{

std: :experimental: :strand<std: :experimental: :system_executor> strand_;
/] ..
b

void price_time_order_book: :handle_event(order_management::new_order o)

{

std::experimental::dispatch(strand_, [=]{ process_new_order(o); });

}



3. Order book

m A system_executor embodies this rule:
Function objects are allowed to run on any thread in the system.
m A strand embodies this rule:

Run function objects according to the underlying executor’s
rules, but also run them in FIFO order and not concurrently.

m The dispatch function says:
m Run the function object immediately if the rules allow it.
m Otherwise, submit for later execution.



3. Order book

m Thus, the combination of system_executor, strand and
dispatch...

std::experimental::dispatch(strand_, [=]{ process_new_order(o); });
m means:

If the strand is not busy, run process_new_order immediately.
m [f there is no contention on the strand, latency is minimized.

m [f there is contention, the strand in any case ensures that
process_new_order is never run concurrently.

m Distinct order books can still process orders in parallel.



.P.
4. Market data bus

m Passes the result of a match to the market data feeds for
dissemination.

m Feeds are subscribed to the bus only during program start.
No synchronization is required to dispatch an event.

void market_data_bus::dispatch_event(market_data::new_order o)

{
for (auto& f: feeds_)
f->handle_event(o);

}

void market_data_bus::dispatch_event(market_data::trade t)

{
for (auto& f: feeds_)
f->handle_event(t);



.*.
5. Market data feed

m Sends messages to subscribers, e.g. using UDP multicast.
m Messages must be processed atomically and in FIFO order.

m Uses system_executor, strand and dispatch.

void market_by_order::handle_event(market_data: :new_order o)
{
std: :experimental: :dispatch(strand_,
[=]O mutable
{
0.sequence_number = next_sequence_number_++;
std::ostringstream os;
0S << O;
std::string msg = os.str(Q);
socket_.send(msg.data(), msg.length());
1)



+
5. Market data feed

m Sends a heartbeat once a second.

void market_by_order::send_heartbeat()

{
market_data: :heartbeat h;
h.sequence_number = next_sequence_number_;
h.time = std::time(nullptr);

std::ostringstream os;
0s << h;
std::string msg = os.str();

socket_.send(msg.data(), msg.length());

std::experimental::defer_after(std::chrono::seconds(1),
strand_, [this]{ send_heartbeat(); });

m Uses a defer operation since the submitted function object
represents a continuation of the caller.



.*.
Trading system design summary

Order
Books
Thread pool with
Leader/Followers
design pattern
Dispatches through a
strand on the system
Y Dispatches through a
executor

strand on the system
executor



Example: flow of three
simultaneously arriving orders

dispatched dispatched

: : ) : Thread from
immediately immediately Connection
m— — Handler
thread pool
dispatched Thread from
immediatel i
b/ contended message flow, %ong;acﬂ;rzl
|I queued by strand anaiet
thread pool
Thread from
Connection
contended message flow, Handler #3

queued by strand thread pool




Use case #4:
asynchronous operations




Chains of asynchronous operations

m Asynchronous operations are often chained.

N\

void connection::do_read()
{
socket_.async_read_some(in_buffer_,
[this] (error_code ec, size_t n)
{
// ... process input data ...
if (lec) do_read();
1)



Chains of asynchronous operations

m And in many cases an object will have more than one chain.

/K/W

void connection::do_write()
{
// ... generate output data ...
async_write(socket_, out_buffer_,
[this] (error_code ec, size_t n)

{
if (lec) do_write();

1)




=
Coordinating multiple chains

m With a single-threaded event loop, only one handler can
execute at a time.

RAAAR

m No synchronization is required to protect shared data.




=
Coordinating multiple chains

m However, if we choose to execute the completion handlers on

/b Q\/{

m ... we may introduce data races.




=
Coordinating chains using a strand

m A strand ensures that completion handlers never execute
concurrently.

~

queued by
strand

strand_

/

m Explicit synchronization is still not required to protect shared
data.



=
Coordinating chains using a strand

m To implement this, we use a single strand for all
asynchronous operations associated with an object.

void connection::do_read()

{

socket_.async_read_some(in_buffer_,
wrap(strand_, [this](error_code ec, size_t n)

{
// ... process input data ...
if (lec) do_read();

1));

}

m The wrap function is used to associate an executor with an
object.

m In this example, we associate the strand with the lambda.



=
Coordinating chains using other

executor types

m The wrap function works with any executor or execution
context.

void connection::do_read()

{

socket_.async_read_some(in_buffer_,
wrap(pool_, [this](error_code ec, size_t n)

{
// ... process input data ...
if (lec) do_read();

1));

}

m Here we are associating a thread pool with the lambda.



+ .
The associated executor

m Rather than using the wrap function, the associated executor
can be manually specified.

m Provide a nested executor_type typedef and a get_executor
member function.

m Example: hand-rolled function object

struct my_function {
typedef system_executor executor_type;

executor_type get_executor() const noexcept {
return system_executor();

}

void operatorOQOQO { ... }
s



+
Executor-aware

asynchronous operations

m For this to work correctly, an asynchronous operation must
participate in an executor-aware model.

m An executor-aware asynchronous operation must:
m Ask the completion handler for its associated executor.

m While pending, maintain an executor_work object for the
associated executor.

m Tells the executor to expect a function object in the future.
m Example: tells a thread pool to keep running.

m Dispatch, post or defer any intermediate handlers, and the final
completion handler, through the associated executor.

m Ensures handlers are executed according to the rules.
m Example: execute all handlers within the same strand.



+
Example: an executor-aware

asynchronous file read

m Asynchronously read a line from a file and pass the string to
the handler.

template <class Handler>

void async_getline(std::istream& is, Handler handler)

{
// Create executor_work for the handler’s associated executor.
auto work = make_work(handler);

post([&is, work, handler=std::moveChandler)]() mutable {
std::string line;
std::getline(is, line);

// Pass the result to the handler, via the associated executor.
dispatch(work.get_executor(),
[Tine=std::move(line), handler=std: :move(handler)] () mutable {
handler(std: :move(line));

1)
P



+ .
Composing executor-aware

asynchronous operations

m When composing asynchronous operations, intermediate
operations can simply reuse the associated executor of the

final handler.

template <class Handler>
void async_getlines(std::istream& is, std::string init, Handler handler)

{

// Get the final handler's associated executor.

auto ex = get_associated_executor(Chandler);

// Use the associated executor for each operation in the composition.

async_getline(is,
[&i1s, Tines=std::move(init), handler=std::move(handler)]

wrap (ex,
(std::string 1line) mutable
{
if (line.empty())
handler(lines);
else
async_getlines(is, 1lines + line + "\n", std::moveChandler));
)



==

The executors library and
asynchronous operations

m Executors and execution contexts are key parts of an
asynchronous model.

m The functions provided by the executors library ...
m dispatch, post, defer
m dispatch_at, post_at, defer at

m dispatch_after, post_after, defer_after

m ... are really just executor-aware asynchronous operations.




Summary of executors
library key features




T .
Type traits

m Class template handler_type

m Transforms a completion token into a completion handler.

m Class template async_result

m Determines the result of an asynchronous operation’s initiating
function.

m Class template async_completion

m Helper to simplify implementation of an asynchronous operation.



+
Memory

m Class template associated_allocator

m Used to determine a handler’s associated allocator.

m Function get_associated_allocator.

m Obtain a handler’s associated allocator.



==

Executors

m Class template execution_context
m Base class for execution context types.

m Class template associated_executor
m Used to determine a handler’s associated executor.

m Function get_associated_executor
m Obtain a handler’s associated executor.

m Class template executor wrapper
m Associates an executor with an object.

m Function wrap
m Associate an executor with an object.




+
Executors

m Class template executor_work

m Tracks outstanding work against an executor.

m Function make work

m Create work to track an outstanding operation.

m Class system_executor

m Executor representing all threads in system.

m Class executor

m Polymorphic wrapper for executors.



+
Executors

m Functions dispatch, post and defer

m Execute a function object.

m Class template strand

m Executor adapter than runs function objects non-concurrently and
in FIFO order.



Timers

m Functions dispatch_at, post_at and defer_at

m Execute a function at an absolute time.

m Functions dispatch_after, post_after and defer_after

m Execute a function after a relative time.



+
Futures

m Class template specialization async_result for packaged._task
m Supports use of packaged._task with dispatch, post, defer, etc.

m Class template packaged_handler

m Implements lazy creation of a packaged._task.

m Class template packaged_token

m Implements lazy creation of a packaged._task.

m Function package

m Return a packaged_token for use with dispatch, post, defer, etc.



+ .
Execution contexts

m Class thread_pool

m A fixed size thread pool.

m Class loop_scheduler

m A thread pool where threads are explicitly donated by the caller.



